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Three-dimensional spectral/hp computations have been performed to study the
fundamental mechanisms of vortex shedding in the wake of curved circular cylinders
at Reynolds numbers of 100 and 500. The basic shape of the body is a circular cylinder
whose centreline sweeps through a quarter section of a ring and the inflow direction lies
on the plane of curvature of the quarter ring: the free stream is then parallel to the geo-
metry considered and the part of the ring that is exposed to it will be referred to as the
‘leading edge’. Different configurations were investigated with respect to the leading-
edge orientation. In the case of a convex-shaped geometry, the stagnation face is the
outer surface of the ring: this case exhibited fully three-dimensional wake dynamics,
with the vortex shedding in the upper part of the body driving the lower end at one
dominant shedding frequency for the whole cylinder span. The vortex-shedding mech-
anism was therefore not governed by the variation of local normal Reynolds numbers
dictated by the curved shape of the leading edge. A second set of simulations were
conducted with the free stream directed towards the inside of the ring, in the so-called
concave-shaped geometry. No vortex shedding was detected in this configuration: it
is suggested that the strong axial flow due to the body’s curvature and the subsequent
production of streamwise vorticity plays a key role in suppressing the wake dynamics
expected in the case of flow past a straight cylinder. The stabilizing mechanism stem-
ming from the concave curved geometry was still found to govern the wake behaviour
even when a vertical extension was added to the top of the concave ring, thereby
displacing the numerical symmetry boundary condition at this point away from the top
of the deformed cylinder. In this case, however, the axial flow from the deformed cyl-
inder was drawn into the wake of vertical extension, weakening the shedding process
expected from a straight cylinder at these Reynolds numbers. These considerations
highlight the importance of investigating flow past curved cylinders using a full three-
dimensional approach, which can properly take into account the role of axial velocity
components without the limiting assumptions of a sectional analysis, as is commonly
used in industrial practice. Finally, towing-tank flow visualizations were also
conducted and found to be in qualitative agreement with the computational findings.

1. Introduction
A quarter segment of a ring can be considered as a generic shape for a deformed

catenary riser pipe. Within the bluff-body flow community, there is an extensive
amount of literature on various aspects of the flow past a straight cylinder. Although
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the different flow regimes occurring at increasing Reynolds numbers for a straight
cylinder have been widely studied and other aspects such as a sheared inflow and
vortex-induced vibrations have also been broadly investigated, the wake behind curved
or deformed cylinders have naturally received much less attention.

The initiation of vortex shedding for a straight circular cylinder is observed to
occur at Reynolds numbers between 47 and 49. At low Reynolds numbers, the wake
of the straight circular cylinder can remain two-dimensional with careful control of
the end conditions. The two-dimensional wake then undergoes transition to three-
dimensionality in two stages that manifest themselves also as discontinuities in the
Strouhal–Reynolds number curve (Williamson 1988). The first discontinuity occurs at
a Reynolds number of approximately 180 and has been named Mode A. It involves
the deformation of the spanwise vortices in a wavy fashion and the formation of
streamwise vortex loops. The second discontinuity is associated with a change in the
type of three-dimensional structures in the wake, from vortex loops to finer-scale
streamwise vortices. It has been labelled Mode B and comprises a gradual transfer
of energy from Mode A shedding, which occurs at Reynolds numbers between 230
and 260. The character of each discontinuity is markedly different: in Mode B the
flow behaviour does not exhibit a hysteresis, as found for Mode A, and the transition
occurs smoothly over a larger range of Reynolds numbers. Blackburn, Marques &
Lopez (2005) have studied the transition modes using Floquet stability analysis. When
only one parameter is varied (i.e. the Reynolds number), three different bifurcations
are possible in the passage from two-dimensional to three-dimensional flow: the long-
and short-wavelength instabilities in the wake, Modes A and B respectively, are
synchronous with real Floquet multipliers and represent a primary and secondary
bifurcation. The third mode is a quasi-periodic state, which is not critical in this range
of Reynolds numbers (up to 280 approximately), but becomes unstable at Re ≈ 377
and gives rise either to a modulated travelling wave or to a modulated standing wave.

When considering the effect of curvature, the flow past a ring normal to the
flow has previously been investigated by several researchers. Takamoto & Izumi
(1981) reported on the stable arrangement of vortex rings developed in experiments
behind an axisymmetric ring at low Reynolds numbers. Bearman & Takamoto (1988)
investigated the wake structures developed past rings and disks in a wind tunnel where
the models were suspended normal to the free stream at Reynolds numbers of the
order of 104. Leweke & Provansal (1995) studied the wake of high-aspect-ratio rings
at low Reynolds numbers. In the Reynolds-number range between 50 and 200 they
found that, depending on the initial conditions, different modes of vortex shedding
could occur: with smooth initial conditions, the parallel modes dominated in this
investigation. Miliou, Sherwin & Graham (2003) presented a numerical simulation of
the shedding patterns past a curved cylinder (a quarter of the ring geometry) at a
Reynolds number of 100. In-phase shedding along the span was detected with vortex
rings shed periodically, parallel to the body, in agreement with Leweke & Provansal
(1995). With the flow normal to the plane of curvature, a qualitative behaviour similar
to that expected for a straight two-dimensional cylinder was observed.

A configuration where the upstream flow is parallel to the plane of curvature
has, however, received comparably little attention, but is of great interest in marine
hydrodynamics, especially in off-shore applications such as flexible riser pipes that
deform under the effect of ocean streams and waves. In the present work, numerical
investigations have been performed at Reynolds numbers of 100 and 500: although
these values are several orders of magnitude lower than a realistic range (Re ≈ 106

for riser pipes), they allow a better representation of the basic shedding modes which
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Figure 1. (a) Definition of convex configuration; a ten diameter horizontal extension is
included; (b) definition of concave configuration.

have been investigated mainly for straight cylinders. We believe that a complete study
of the fundamental features of vortex formation and shedding for curved geometries
must be undertaken before considering more complex and turbulent dynamics. In
addition, flow, visualization experiments have been conducted alongside the numerical
simulations.

This paper is arranged as follows. Section 2 presents the problem definition and a
brief overview of the computational method employed, data analysis and convergence
tests. Section 3 details the results of the three-dimensional computations for the first
geometrical configuration, and in § 4 we discuss these findings. In § 5, we present the
flow past the second configuration and these results are discussed in § 6. Finally, we
conclude and summarize in § 7.

2. Problem definition and computational techniques
2.1. Problem definition

As outlined in § 1, the main component of the geometry is a circular cross-sectioned
cylinder whose centreline is a quarter of a ring (torus). (Strictly speaking it should
be a pipe, but we have chosen to use cylinder because of the convention in the
literature of external flow past circular cylinders and internal flow within circular
pipes.) The non-dimensional radius of curvature is defined as the ratio of the radius,
R, of the curved axis of the deformed cylinder to the cross-section diameter, D, of the
cylinder. In all the numerical investigations presented in this paper, the curved circular
cylinder has a non-dimensional radius of curvature, R/D, of 12.5, as figure 1 depicts.

In studies of a full ring the aspect ratio, defined as the ratio between the external
perimeter of the ring and the cylinder cross-section diameter, has been used to
parameterize the geometry. If we were to calculate an analogous parameter for
the quarter of a ring studied here, the aspect ratio would be 81.7. From Leweke &
Provansal (1995) and Bearman & Takamoto (1988), when the aspect ratio is above 20,
the wake patterns of flow perpendicular to the plane of the ring have been observed
to approximate those of a straight cylinder. The computations presented in this paper
involve a uniform incident velocity profile and two types of bodies (figure 1). We
define the Reynolds number as Re =U∞D/ν, where U∞ is the free-stream velocity.
The ‘convex bend’ configuration is a quarter ring with a horizontal straight cylinder
of ten diameters added onto the end of the ring; a uniform flow parallel to the plane
of curvature has been applied outside the bend (figure 1a). The second body, referred
to as the ‘concave bend’, involves only the quarter ring part of the first body rotated
about the z-axis by π/2; a third configuration has been obtained by adding a vertical
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extension, 6 diameters long, on the top of the concave geometry. In both cases, a
uniform flow parallel to the plane of curvature has been applied on the inside of the
bend.

2.2. Navier–Stokes solver

The three-dimensional computations have been performed using a spectral/hp
element Navier–Stokes solver developed by Sherwin & Karniadakis (1996) and
Karniadakis & Sherwin (1999). Spectral/hp element methods combine attributes
of both finite-element and spectral methods: one can increase simultaneously the
number of elements in the domain, h-refinement, and the order of the polynomial
expansions within the element, which is referred to as p-refinement. The temporal
discretization of the Navier–Stokes equations is achieved by a stiffly stable splitting
scheme (Karniadakis, Israeli & Orszag 1991). In order to determine the fields at tn+1,
the velocity and pressure at time tn are calculated in three substeps over a time step
�t . The nonlinear terms are treated explicitly, while a Poisson equation for pressure
is obtained by enforcing the incompressibility constraint on an intermediate velocity
field. Finally, the linear terms are treated implicitly and the final velocity field is
obtained through the solution of a Helmholtz equation. Therefore, in a full time step,
a Helmholtz equation is solved for each of the velocity components and a Poisson
equation is solved for pressure.

2.3. Mesh generation

The mesh generation for all the computational investigations has been accomplished
by Felisa (Peiró, Peraire & Morgan 1994). A variant of the advancing front method
(Peraire, Peiró & Morgan 1993) is employed for the triangulation of the domain
surfaces and the generation of the three-dimensional tetrahedral mesh. For the
generation of a boundary-layer mesh near the cylinder wall regions, a modified
advancing layers method (Peiró & Sayma 1995) has also been employed whereby
the nodes of the mesh in the neighbourhood of the solid boundaries are generated
along lines that are approximately normal to the surface. At the surface, spectral/hp
elements are allowed to deform to model consistently the curved surface, as described
in Sherwin & Peiró (2002). As indicated in figure 1, the cylinder was aligned to
the (x, z)-plane with the free-stream direction parallel to the x-coordinate. Taking
the origin as the centre or rotation of the ring, the convex geometry computational
domain spanned the region −10D � x � 18D, −5D � y � 5D, −18D � z � 0, whilst
the concave geometry computational domain spanned the region 0 � x � 28D,
−8D � y � 8D, −21D � z � 0. In the convex cylinder case, the mesh was comprised
of 10 250 elements, out of which 1184 were prismatic surface elements, whereas in the
concave configuration the mesh consisted of 14 847 elements, out of which 1 574 were
prisms. In this second case, when the computation is performed using a sixth-order
polynomial expansion, the mesh accounts for 1 423 436 local degrees of freedom per
variable, whereas 2 827 515 local degrees of freedom per variable are applied when
an eighth-order polynomial expansion is adopted.

2.4. Numerical boundary conditions

2.4.1. Convex configuration

(i) Symmetry boundary conditions are assigned to the top boundary of the
computational domain when oriented as in figure 1 (i.e. w = 0, du/dn ≡ du/dz = 0
and dv/dn ≡ dv/dz =0).
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P = 6 P = 8 P = 4 P = 6 P = 8

CFxmean 1.2214 1.2209 CFxmean 1.0758 1.0747 1.0745
CFymean 0.0001 0.0 CFymean 0.0009 −0.0001 −0.0001
CFzmean 0.3289 0.3286 CFzmean −0.4211 −0.4200 −0.4200

Table 1. Mean values for the integrated force coefficients as a function of polynomial order
P for the flow past the convex configuration (left) and the concave configuration (right) at
Re = 100.

(ii) At the outflow a fully developed zero stress condition was imposed, i.e.
du/dn= 0, dv/dn=0, dw/dn= 0 and p = 0. The length of the horizontal extension
has been chosen in order to allow the wake to evolve and reach a stable state.

(iii) The free-stream velocity was imposed along all other boundaries, consisting
in three Dirichlet boundary conditions for each of the velocity components and a
Neumann boundary condition for the pressure.

2.4.2. Convex configuration and concave configuration with vertical extension

(i) In these cases as well, the top computational plane, which includes an
intersection with the body, has been modelled using a symmetry boundary condition.

(ii) The outflow corresponds to a fully developed zero stress condition.
(iii) A velocity inlet boundary condition U = [1, 0, 0] has been imposed on all

the other computational planes, with the exception of the inflow where the cylinder
intersects the boundary. Here the following no-slip conforming boundary condition
was applied:

u(x, y, z)

U∞
= 1 − exp(−50(

√
x2 + y2 + (z + 12.5)2 − 0.5)),

v(y, z)

U∞
=

w(y, z)

U∞
= 0,

where the exponential term has been added to the inflow to achieve exponential
decay of the velocity inside the boundary layer. Away from the body, the free-stream
velocity is U∞ = 1.

2.5. Data analysis

In the following analysis, we consider the integrated unsteady forces acting on the
cylinder. Further insight can be gained from determining the variation of these forces
along the span: the lift coefficients on each two-dimensional circular section are
therefore presented, allowing a better understanding of the different contribution of
the three-dimensional integrated forces in each section of the cylinder. Finally, in
order to investigate the wake topology developed in the flow simulated, the Jeong &
Hussain (1995) λ2 method was employed for capturing and visualizing the vortical
structures. This criterion stems from the pressure minimum in the absence of unsteady
or viscous contributions and dictates that in order to locate a vortex core, the second
largest eigenvalue, λ2, of S2 +Ω2 must be negative.

2.6. Convergence test

In all the simulations, the order of the polynomial expansion has been uniformly
increased from 2 to 4 and then to 6 (and further to 8 in some of the computational
cases). Most of the numerical results stem from computations initially performed
using first-order time integration to establish the flow features, and then adopting
a second-order time integration scheme. For the convex configuration at Re = 100,
the mean values of the integrated forces computed are shown in table 1 on the left-
hand side. Figure 2 illustrates the integrated force coefficients in the three Cartesian
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Figure 2. Snapshot in time for the integrated force coefficients from tU∞/D = 305 to
tU∞/D = 625, part of P = 4 to P = 8. Convex configuration configuration at Re = 100.

directions for the same case: the transition from P = 4 to P = 6 is observed at
t |U∞|/D ≈ 350 and the change from order 6 to order 8 at t |U∞|/D = 543. The values
of the time averaged force coefficients for P = 6 and P = 8 are in good agreement,
with a maximum discrepancy of 0.03%. The simulations conducted with first- and
second-order time integration were in agreement to the order of 10−3. In both cases,
force convergence has been achieved. Similarly, table 1 (right-hand side) shows the
convergence of mean force coefficients for the concave ring at Re =100: a reduction
of merely 0.1% in the magnitude of CFx is observed when the polynomial order
is increased from 4 to 6 and a reduction of 0.02% occurs between P = 6 and
P = 8.

2.7. Sectional approximation of the flow

A common approach to modelling the hydrodynamics of the flow past a deformed
cylinder in industrial practice is to use a sectional analysis based on strip theory.
The flow is typically computed in two-dimensional planes that are placed at intervals
along the span of the cylinder and are perpendicular to its axis. In the case of curved
geometries, the onset flow is decomposed into components normal and perpendicular
to the cylinder axis. Following the ‘independence principle’, only the normal
component of the inflow velocity is considered to be responsible for the fluid dynamics
forces generated on the body: the tangential component is typically neglected and
hence the production of axial flow is ignored by this approach. If θ denotes the angle
between each section plane and the free-stream flow vector, the normal component is
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Figure 3. Vortex cores in the wake of the convex configuration at Re =100, λ2 = −0.1:
(a) three-dimensional view extracted at a minimum of the integrated CFy , tU∞/D ≈ 524,
(b) view from the top.

obtained as U∞ cos θ , whereas the axial component is equal to U∞ sin θ . A sectional
two-dimensional argument will therefore consider only the normal direction, U∞ cos θ ,
at each section. These simulations are typically many orders of magnitude faster than
fully three-dimensional computations: strip-theory-based codes have been used in the
past to simulate more realistic Reynolds numbers for riser pipe applications (see
Willden & Graham 2004; Meneghini et al. 2004), but the validity of their use for non-
straight cylinders (where the normal velocity component along the span is not constant
and the formation of axial flow significant) is still open to question and will be further
discussed.

3. Results: convex configuration
3.1. Re = 100

Figure 3 shows a three-dimensional view of the wake topology obtained using the
Jeong & Hussain (1995) criterion to compute isosurfaces at a λ2 value of −0.1.
Figure 3(b) depicts a projection of the vortex cores onto the (x, y)-plane, i.e. viewed
from the top, showing the antisymmetric wake with a staggered array of vortices. It
can be seen that the vortex cores are straight close to the body with their axes normal
to the free stream, but start to distort further downstream.

To understand the wake dynamics better, the variation of the horizontal transverse
sectional force coefficient, CFy , has been evaluated within slices normal to the cylinder
axis at different spanwise locations: the results are presented in figure 4 together with
an enlarged view of the integrated force coefficients. We recall that the x-direction
is the direction of the drag and the y- and z-directions represent the horizontal and
vertical component of the transverse force, respectively. With s denoting the arclength
measured from the upper plane, the top of the cylinder is at s/D = 0 whereas the
vertical slice at the end of the quarter ring corresponds to a non-dimensional arclength
of s/D =19.6. Figures 4(a) and 4(b) show, respectively, the strong alternating vortex,
shedding pattern at the top of the curved cylinder and the corresponding periodic
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Figure 4. (a) Variation of sectional CFy along the length of the quarter ring part of the
convex configuration, Re = 100. The isocontours range from −0.17 to +0.17. (b) Snapshot in
time for the integrated force coefficients computed at P = 8.

oscillations of the transverse force in the y-direction: this is consistent with the vortex
cores displacement in figure 3.

The observation that the main vortices are straight, similar to the in-phase shedding
observed past a straight cylinder, but the sectional forces plot, (figure 4a) does not
remain constant in sign along the span at a fixed time level may appear inconsistent at
first. At t∗

1 ≈ 524 in figure 4(a), we observe a decrease in the magnitude of the forces as
s/D increases and finally a change in the sign: this can be explained by considering the
effect of the body curvature. In fact, figure 3 shows clearly that the distance between
cores and cylinder decreases along the span, leading to a gradual phase change.
Consequently, at different spanwise sections, the influence of the developing shear
layers on the body is different and the sign of the forces changes accordingly. The
dashed line in figure 4(a) represents a model for the phase variation of the sectional
force along the quarter ring based on the free-stream velocity UC = U∞(=1), whereas
the continuous line was evaluated based on the convective velocity of the vortices
when UC = 0.8. The relation between the body curvature and the phase variation is
given by

tUC

D
=

(R + D/2)(1 − cos(s/R)

D
. (3.1)

This point will be discussed further in § 4.
Figure 5(a) depicts the time-averaged variation of pressure along the stagnation

line as well as the base pressure. To highlight the three-dimensionality of this type
of flow, the variation of the ū and w̄ velocity components (Cartesian axes), extracted
0.3 diameters upstream in the radial direction of the curved cylinder, is shown
in figure 5(b). As time-averaged pressure decreases along the stagnation line, the
magnitude of the w velocity component increases along the span and reaches a
maximum of 30% of the free-stream magnitude at a non-dimensional arclength of
s/D = 10, which corresponds to a section inclined at 45.8◦ to the horizontal.
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Figure 5. Variation of time-averaged pressure and velocity along the span of the convex
configuration, Re = 100. (a) �, Base pressure and �, stagnation pressure, (b) �, ū and �, w̄
velocity components extracted 0.3 diameters upstream of the curved cylinder.

3.1.1. Experimental flow visualization

Experimental work was also conducted to compare the computational results with
the flow visualizations. A model curved cylinder with the same aspect ratio as in the
computational cases was towed in a water tank (Owen 2001) at an effective Reynolds
number equal to that of the computations. The flow-visualization technique employed
was laser-induced fluorescence. Coloured dye was adhered on the stagnation line of
the curved cylinder in two slots symmetrically offset slightly from the centre. The
red and green colours in the towing-tank flow-visualization images are attributed to
sulfuro rhodamine and sodium fluorescein dye, respectively (Lear 2003). A Class IV
laser was used to illuminate the dye diffusing from the stagnation line of the curved
cylinder and the wake patterns formed.

The flow visualization obtained for this configuration is shown in figure 6. Note
that, as the camera in the experiments was positioned lower than the water free
surface, a reflection is introduced: the picture therefore includes the mirror image of
the flow visualization in the water surface. The slight bowing of the vortices towards
the top cylinder end in experiments where a straight circular cylinder is towed through
a water surface has been observed previously (Slaouti & Gerrard 1981) and is due to
the free surface: this is not present in the numerical results, as the upper boundary
was modelled as a symmetry plane.

3.2. Re = 500

The flow past the convex configuration was also computed at a higher Reynolds
number of 500. At this Reynolds number, a straight cylinder would exhibit three-
dimensional instabilities in the wake: therefore, this study allows us to consider the
role of three-dimensional wake instabilities on a curved cylinder. This computation
was restarted from the § 3.1 simulation at a Reynolds number of 100.

The variation of sectional CFy computed at sections normal to the cylinder axis for
the convex configuration at Re = 500 is depicted in figure 7(a). A comparison with
figure 4 at Re = 100 shows that the magnitude of sectional CFy does not decrease
uniformly along the span; moreover, the forces persist further down the pipe, although
a fundamental single period is not present in this case. As in the previous case, the
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Figure 6. Towing-tank flow visualization: (a) convex configuration, Re = 100, (b) convex
configuration, Re =500.

phase line based on the free-stream velocity (see (3.1)) is superimposed on the sectional
forces within this figure.

Figure 7(b) shows an enlarged section of the integrated force coefficients in the
x-, y-, and z-directions for part of the simulation computed using sixth-polynomial
order. Figure 8(a) shows the wake topology in a three-dimensional perspective,
whereas figure 8(b) shows the same data viewed from the top. Both images highlight
the transitional nature of the wake and the presence of small streamwise vortical
structures. The region where the vortices curl above the horizontal part of the cylinder
becomes more energetic owing to the increased Reynolds number. The experimental
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Figure 7. (a) Sectional CFy variation along the length of the quarter ring part of the convex
configuration, Re = 500; the isocontours range from −0.44 to + 0.44. (b) A detailed section of
the integrated force coefficients computed at sixth-polynomial order.
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Figure 8. Vortex cores in the wake of the convex configuration at Re =500, λ2 = −0.8,
tU∞/D ≈ 652: (a) three-dimensional view, (b) view from the top.

flow visualization for this case is in good qualitative agreement with the wake topology
extracted from the three-dimensional computation. The gross features of the flow with
streamwise vorticity connecting the spanwise rollers can be seen in figure 6(b).

The variation of time-averaged pressure on the stagnation line and the base pressure
for the convex configuration at Re = 500 are shown in figure 9(a), whereas figure 9(b)
depicts the variation of the time-averaged streamwise (ū) and vertical spanwise (w̄)
velocity components extracted 0.3 diameters upstream in the radial direction of the
curved cylinder. In both figures, the data is averaged over a non-dimensional time
interval tU∞/D = 10. As pressure decreases along the stagnation line, the magnitude
of the w velocity component increases along the span and reaches a maximum of
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Figure 9. Variation of time-averaged pressure and velocity along the span of the convex
configuration, Re = 500: (a) �, base pressure and �, stagnation pressure, (b) �, ū and �, w̄
velocity components extracted 0.3 diameters upstream of the curved cylinder.

approximately 26% of the free stream at a non-dimensional arclength of s/D = 11,
which corresponds to a section inclined at 50.4◦ to the horizontal. This displaced
location of the peak velocity as compared to the Re = 100 case is obviously a
consequence of the increased Reynolds number and likely to be related to the
increased importance of inertial over viscous effects.

4. Discussion: convex configuration
4.1. Sectional approach validity

Motivated by the reasonably common modelling practice of analysing the flow
past deformed bodies using a two-dimensional sectional argument, we can consider
what physical properties seem to correspond to this assumption. We recall that the
sectional approximation of the flow, as introduced in §2.7, would consider the flow
to be approximated by a two-dimensional slice normal to the cylinder centreline with
a local onset velocity taken as the free-stream velocity component projected into
this plane. Therefore, under this assumption there is an effective reduction in the
local normal Reynolds number along the span as the angle of the cylinder to the
incident flow changes along its length. If the flow within the sectional plane were truly
two-dimensional, there will be a point at which the normal flow Reynolds number
falls below the critical value for vortex shedding. Consequently, vortices will not be
expected to be shed. In figure 4, a non-dimensional arclength of s/D =5 corresponds
to a section inclined at approximately 23◦ to the horizontal and a local Reynolds
number, Rel = Re cos θ , of approximately 92. Following this logic, a non-dimensional
arclength of s/D =10 corresponds to a section inclined about 69◦ to the horizontal
and would have a local Reynolds numbers of 36, which is below the threshold for
the onset of vortex shedding for a circular straight cylinder (Rel =47 − 49). Indeed,
for this study, the vortex shedding has almost disappeared. Similarly, at Re =500
the local Reynolds number in every section between 0 � s/D � 15 is higher than this
critical value and the contour levels in figure 7 depict that shedding is present.

Therefore, up to this point, the sectional approximation would seem to hold.
However, from a two-dimensional sectional perspective, we would also expect to see
a variation of the Strouhal number in every section along the span of the convex
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configuration as the local normal Reynolds number changes. Flows past straight
cylinders with varying Strouhal numbers tend to arrange themselves into cellular
type patterns where different sections select discrete shedding frequencies (Gaster
1969; Gerich & Eckelmann 1982; Williamson 1989). However, the results of this
study indicate that the flow past this type of curved cylinder do not behave in
this manner since Strouhal frequency is constant in every spanwise section. Since
the sectional Reynolds number decreases along the span as the normal velocity
component decreases, this implies that St decreases continuously with sectional Re.
In fact, we observe that the upper cylinder shedding drives the shedding from the
lower end without frequency variation occurring along the span. As a result, there
is only one dominant frequency in the CFy direction (at least for the Re = 100 case).
This highlights one of the possible shortcomings of sectional computations for three-
dimensional geometry; on the other hand, a fully three-dimensional approach involves
a very high computational cost, resulting in severe restrictions on its application to
realistic Reynolds-number ranges.

4.2. Phase variation and wake topology at Re = 100 and Re = 500

At Re = 100, the vortex cores are straight close to the body, which would tend to
imply, at first impression, that shedding is in-phase. However, since the geometry is
curved and cylinder and forces are usually considered in the frame of reference of
the body, the distance between the cylinder and any single straight vortex core varies
along the span. Therefore, when considering sectional forces as shown in figure 4(a)
and 7(a), there is a spanwise variation of the shedding from the cylinder and a phase
change in the sectional forces. This phase change can easily be modelled by (3.1) with
an assumption about the mean vortex convection speed.

At Re = 500, the vortex cores are more energetic than at lower Reynolds number,
especially close to the horizontal extension, as indicated by the longer downstream
existence of the coherent structures (figure 8). However, we also note in this figure
that the wake topology exhibits a combination of vertical rollers and braids, which
are commonly associated with Mode A and B transitions in flow past a straight
cylinder (Williamson 1988; Barkley, Tuckerman & Golubitsky 2000). At this higher
Reynolds number, we would expect to see more evidence of the shorter wavelength
Mode B structure which is reasonably evident in both figures 8 and 6(b). Finally, we
note also that in this case, the phase line based on the free-stream velocity matches
the sectional forces isocontours more closely than in the plot at Re = 100, suggesting
that the increased Reynolds number leads to a more in-phase shedding.

4.3. Axial flow generation

Moving away from the idea of sectionally analysing the flow, we observe that there is a
significant motion of flow along the length of the curved cylinder (see figures 5 and 9).
The curved nature of the stagnation face in the convex configuration has the effect
of deflecting a significant amount of the approaching flow (approximately one third
of the total flow rate) towards the bottom of the cylinder. The increasingly dominant
axial flow component parallel to the curved cylinder, combined with the reduction in
the normal flow component, changes the body from ‘bluff’ to effectively ‘slender’: at
s/D =13, which corresponds to a section inclined at 60◦ to the horizontal, the axial
flow reaches a maximum of 81% of the free-stream velocity at Re = 100, while the
normal velocity component is approximately 0.1U∞. Therefore, along the lower part
of the curved cylinder, as it becomes aligned with the free stream, we observe that
vortex shedding in the near wake becomes less vigorous, although synchronous with
the upper part of the body.
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Figure 10. Centreplane streamlines (y =0) overlaid on pressure contours for the flow past
the concave configuration at Re = 100. The insets show u velocity contours at horizontal slices
located at the top plane, and 2, 5 and 8 diameters vertically below.

5. Results: concave configuration
5.1. Basic geometry, Re = 100

Contrary to the flow past the convex geometry, this configuration does not exhibit
vortex-shedding features and therefore forces appear to be steady in all directions.
Owing to the suppression of vortex shedding and hence the removal of energy
transport away from the body, it is not surprising that the magnitude of the drag force
is smaller by 12% compared to the convex configuration (comparing both at P = 8).
The ratio of pressure and friction drag, CDprms/CDf rms , is equal to 1.24: this value is
similar to that obtained for the convex case at Re =100 where CDprms/CDf rms ≈ 1.28.

Centreplane streamlines upstream of the curved cylinder superimposed on pressure
contours are shown in figure 10. Similar to the convex configuration, the streamlines
indicate motion along the length of the cylinder, but this is now directed towards the
top computational plane, consistent with the shape of the stagnation face for this
configuration. Figure 10 also depicts the streamwise u velocity contours in the vicinity
of the cylinder at four different horizontal planes located in the top surface and at
2, 5 and 8 diameters vertically below. These velocity contours show symmetric wakes
consistent with the force plots. Moreover, a variation in the wake width along the
span can be observed, with the top slice exhibiting the widest wake and the bottom
one the narrowest. Figure 11 illustrates the three-dimensional wake topology: the λ2

isocontours highlight the absence of interaction between the shear layers.
Similar to our analysis of the convex configuration, figure 12 depicts the variation

of pressure and velocity components along the span of the concave configuration.
The magnitude of the w̄ velocity component increases, and reaches a maximum of
approximately 22% of the free-stream value at a section inclined at 45.8◦ to the
horizontal. The magnitude of the w̄ velocity component reaches a maximum along
the span at exactly the same location, 45.8◦ to the horizontal, in both the convex and
concave configurations, suggesting that this depends primarily on the geometry.
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Figure 11. Wake topology for the flow past the concave configuration at Re =100,
λ2 = −0.01.
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Figure 12. Variation of time-averaged pressure and velocity along the span of the concave
configuration, Re = 100: (a) �, base pressure and �, stagnation pressure, (b) �, ū and �, w̄
velocity components extracted 0.3 diameters upstream of the curved cylinder.

Finally, we note that additional computations were performed to investigate the
effect of domain size (blockage) on the present results. The domain size in the
horizontal y-direction was varied until a blockage of 3.9% was achieved following
Maskell’s theory (see Maskell 1963) and the results were found to be free from the
effects of blockage.

5.2. Influence of the symmetry plane, Re = 100

The nature of this geometry is to drive the flow towards the top of the computational
domain where we have imposed a potentially artificial symmetry boundary condition.
To investigate the role of this boundary condition, a vertical extension, 6 diameters
long, was added to the concave configuration (figure 13). The 6-diameter extension
represents a substantial addition of almost 50% of the height of the concave
configuration.
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concave configuration with a vertical extension of 6 diameters, Re =100, tU∞/d = 414 (CFy

maximum). The insets depict u velocity contours at four horizontal slices along the span.

Figure 13 depicts the computational domain size in the plane including the cylinder
axis and the free-stream vector for this configuration. The flow is in the positive
x-direction, from left to right on the page. The same boundary conditions on the
corresponding planes were assigned as in the concave configuration without vertical
extension: boundary D corresponds to the outflow plane and boundaries A and C
correspond to free-stream boundaries where the velocity condition U∞ =[1, 0, 0] was
imposed away from the body.

Figure 14 displays centreplane streamlines upstream of the geometry superimposed
on pressure contours and u velocity contours at horizontal planes analogous to
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Streamwise
direction

Figure 15. Wake topology for the concave configuration with a 6-diameter vertical extension
at Re = 100, λ2 = −0.01 extracted at a CFy maximum, tU∞/D = 414.

figure 10. The streamlines show that in the region of the curved cylinder, the
motion is still towards the top boundary. The u velocity contours now demonstrate
unsteadiness at the top plane, which is located at the end of the 6-diameter straight
cylinder extension, and at the midspan of the straight cylinder addition. However at
z = 0, which represents the end of the curved cylinder part, the wake is narrow and
symmetric. This suggests that the alternating vortex shedding might resume if the
straight cylinder extension were made somewhat longer than the 6-diameters tested.

Figure 15 illustrates the wake topology for this case. The variation of sectional CFy

and the integrated force coefficients are shown in figures 16(a) and 16(b), respectively.
Note that the range in the contour levels plotted is now between −0.025 and 0.025,
slightly higher than the range for the concave configuration, but still an order of
magnitude smaller than that for the convex configuration: the fluctuations in the
integrated CFy can hence be attributed to the unsteady features in the 6-diameter
straight cylinder addition. The forces in the y-direction exhibit periodic oscillations
whose magnitude, however, is much smaller than that for the flow past the convex
configuration at the same Reynolds number. The Strouhal frequency corresponding
to the periodic fluctuations in CFy is found to be 0.1142 when P = 4 and 0.1123
when P =6. This frequency is smaller than the Strouhal frequency for the convex
configuration by approximately 36%.

In figure 17, the vertical component of vorticity, ωz, is shown at planes normal
to the cylinder axis. Consistent with the wake topology and the sectional forces, the
shear layers are interacting in the top two planes, while the wake becomes more
symmetric as the junction of the curved with the straight cylinder part is approached.

Similar to the previous cases, the variation of pressure and velocity components
along this body is shown in figure 18. The magnitude of the w velocity component
at 0.3 diameters radially upstream of the stagnation face increases along the span
and reaches a maximum of 20% of the free-stream magnitude at s/D = 16. This
non-dimensional arclength corresponds to a section inclined at approximately 45.8◦

to the horizontal. Hence the maximum w̄ velocity component occurs at exactly the



106 A. Miliou, A. de Vecchi, S. J. Sherwin and J. M. R. Graham

(a) (b)

CFx

CPy

CFz

2

415 420 425 430 435

415 420 425 430 435

415 420 425 430 435

0.002

0

0

–0.2

–0.4

–0.6

–0.002

1
6D

D

tU∞/D tU∞/D

s

0

5

10

15

20

25

400 410 420 430

Figure 16. (a) Variation of sectional CFy for the concave configuration with a 6-diameter
straight cylinder extension vertically, Re = 100; the isocountours range from −0.025 to +0.025.
(b) Integrated force coefficients (P = 6): x is the direction of the drag, y is the horizontal
component of the transverse force and z is the vertical one.

same location for this configuration as for the convex and concave configuration.
The vertical addition has not affected the distribution of the w̄ velocity component
along the length of the curved part of the body. As in the case without extension, the
magnitude of the w̄ velocity component increases with downstream distance and at
a line located 1.5 diameters radially downstream of the body it reaches a maximum
of 84% of the free-stream value at a non-dimensional arclength of s/D = 12.5 (see
figure 23a). We also note the presence of a w̄ velocity component of the order of
20% of the free-stream value at the rear of the cylinder in the vertical extension part.

5.3. Basic geometry, Re = 500

The wake topology for this case is shown in figure 19 and demonstrates how the
experiments carried out in the towing tank are in good agreement with the numerical
flow visualizations. The vortex-shedding features are again absent, even though a
slight unsteadiness is present at the top as a consequence of the force fluctuations in
the y-direction, illustrated in figure 20. The magnitude of the force coefficient in the
x-direction is smaller by 19% compared to the convex case at the same Reynolds
number. These plots show that the forces are not completely steady as in the Re =100
case: fluctuations are evident in the integrated CFy and can be attributed to the top
part of the concave configuration. More specifically, figure 20(a) depicts the sectional
distribution of forces, at s/D =2 the oscillatory component of sectional CFy has
the largest amplitude, equal to 0.25. By s/D = 4, the amplitude of these fluctuations
has dropped to less than a half, equal to 0.10, and subsequently, the amplitudes of
the oscillatory components decreasing with increasing s/D. Finally, at s/D =7.5 the
forces are steady.
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Figure 17. Spanwise vorticity contours for the concave configuration with a straight cylinder
extension of 6 diameters at Re = 100, tU∞/d = 414, CFy maximum.
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Figure 18. Variation of time-averaged pressure and velocity along the span of the concave
configuration with a 6-diameter straight cylinder extension, Re = 100: (a) �, base pressure
and �, stagnation pressure, (b) �, u and �, w velocity components extracted 0.3 diameters
upstream of the curved cylinder.

Figure 21 shows the variation of pressure and velocity components along the span
of the concave configuration at a Reynolds number of 500. Figure 21(b) shows that
the magnitude of the w̄ velocity component 0.3 diameters radially upstream of the
curved cylinder reaches a maximum of 18% of the free-stream value at a section
inclined at 47.7◦ to the horizontal. Comparing this plot with figure 12, we see that
the maximum value of the w̄ component occurs at a slightly lower section.
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Figure 19. (a)Wake topology for the concave bend at Re = 500, λ2 = −0.4, tU∞/D ≈ 616
(CFy maximum). (b) Towing-tank flow visualization for the concave body, Re = 500.
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Figure 20. (a) Variation of sectional CFy along the length of the concave configuration,
Re = 500; the isocontours range from −0.25 to +0.25. (b) Integrated force coefficients (P =6).

5.4. Influence of the symmetry plane, Re = 500

The sectional forces for this geometry and the integrated force coefficients for this
case are shown in figures 22(a) and 22(b), respectively. At this Reynolds number, it is
not the straight cylinder extension on the top of the curved body that contributes the
most to the unsteadiness, but rather the sections further down the span. This can be
attributed to the high magnitude of the vertical velocity component in the wake of
the body: as shown in figure 23, at Re = 500, the vertical velocity w̄ reaches the same
order of magnitude as the free-stream velocity (w̄ = 1.1U∞ at a section inclined at
30.9◦, on a line 0.6 diameters downstream in the radial direction). This peak is notably
higher than the same case at Re =100, where w = 0.77U∞. Furthermore, we observe
that the largest fluctuations in the sectional forces are detected for s/D ≈ 6 − 8 and
not at the top part as expected and in contrast with the equivalent geometry at a
lower Reynolds number. Note from figure 20(a) that for the flow past the concave
configuration at Re =500 without a vertical extension, the oscillatory component
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Figure 21. Variation of time-averaged pressure and velocity along the span of the concave
configuration, Re = 500. (a) �, Base pressure and �, stagnation pressure, (b) �, ū and �, w̄
velocity components extracted 0.3 diameters upstream of the curved cylinder.
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Figure 22. (a) Variation of sectional CFy for the concave bend with a vertical extension,
Re = 500; the isocontours range from −0.32 to +0.32. (b) Integrated force coefficients for the
flow past the concave bend with a vertical addition, Re = 500.

of sectional CFy has the largest amplitude at a similar value of s/D ≈ 2. Since this
case does not have the vertical extension, this corresponds to a sectional location
of s/D ≈ 8 in the modified geometry. However, there is a much larger amplitude of
fluctuations in this case, having an amplitude of 0.3 compared to 0.06 without the
boundary extension.

The variation of pressure and velocity components, extracted 0.3 diameters radially
upstream of the curved cylinder, is similar to the case without the extension and so
is not displayed here. Once again, the magnitude of the w̄ velocity component at
0.3 diameters radially upstream of the stagnation face increases along the span until
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Figure 24. Wake topology for the concave configuration with a 6-diameter straight cylinder
extension vertically at Re = 500, λ2 = −0.6, tU∞/d ≈ 432, CFy maximum.

reaching a maximum of 20% of the free-stream value at a section inclined at 45.8◦

from the horizontal (s/D =16).
Finally, figure 24 shows the wake topology through λ2 isocontours: the flow just

below the top of the cylinder exhibits greater streamwise momentum deficit than at
the sections below, where the streamwise vortex structures are convected downstream.
The towing-tank flow visualization for this case is in good qualitative agreement with
the numerical results.

6. Discussion: concave configuration
6.1. Steady-wake features: concave configuration

We have observed from § 5 that there are significant differences in the flow features
of the concave configuration as compared to the convex case. Most, strikingly, at
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both Re = 100 and 500, the majority of the wake has become steady. The completely
different wake features observed for the convex and concave cases can be associated
to the strong velocity component parallel to the stagnation face. Both the convex
and concave configurations generate a vertical w velocity component and axially
aligned flow (see figures 5b and 12b); however, the direction of the velocity depends
on the orientation of the leading edge. In the concave geometry, this flow is directed
towards the top of the domain where the stagnation face flow becomes increasingly
normal to the free-stream velocity direction. From a purely geometrical point of
view we would have expected the top of the concave configuration to be the region
most susceptible to periodic vortex shedding. However, instead, the stagnation flow,
which has ultimately to become aligned to the free stream, leads to a wider wake as
compared to the width of the separated shear layer at the bottom of the concave
geometry. This type of wake variation can equivalently be considered as generating
streamwise component of vorticity. The wider wake and the equivalent generation of
streamwise vorticity tend then to make the shear layer less susceptible to rolling up
in a von Kármán street.

Qualitatively similar wake behaviour was observed in the computational work
of Darekar & Sherwin (2001) and the experimental work of Bearman & Owen
(1998a, b). These papers considered the flow past circular and square cylinders whose
spanwise centreline was deformed sinusoidally making a ‘wavy cylinder’. In this work
a leading-edge cross-flow was also observed where the flow was displaced along the
span from the most upstream wavy section to the most downstream part of the
spanwise waviness or the ‘geometrical minimum’. The flow which was displaced into
the most downstream section subsequently leads to a wider separated shear layer
as compared to the most upstream cross-sections and this wake variation can also
be considered as generating streamwise vorticity within the separating shear layers
around the cylinder.

In the current model, we might consider the ring segment we have studied as a
quarter of a wavelength of a highly wavy geometry aligned vertically to the flow. In the
wavy square cylinder work of Darekar & Sherwin (2001), the sinusoidal wavelength
of the wavy geometry was denoted by λ and the peak-to-peak wave height was
denoted by W . The wavy cylinders considered in this work were up to a maximum of
W/λ= 0.25 and λ/D =11; the analogous parameters for the concave geometry would
be W/λ=0.5 and λ/D = 50. Although these values lie outside the parameter space
investigated by Darekar & Sherwin, some interesting comparisons can be drawn.
As mentioned, the widest part of the wake along the span of the wavy cylinder was
found to be at the geometrical minimum. The equivalent to the ‘geometrical minimum’
in the concave configuration is at the top computational plane, z = 0, which exhibits
the widest wake (figure 10). We further note that the wavy wake regime III(A) of
Darekar & Sherwin (2001) at Re = 100 had a symmetric wake with respect to the
cylinder centreline and longer shear layers, similar to the symmetric topology of the
concave configuration at the same Reynolds number. This regime was also the most
stable of the cases considered, where the largest drag reduction and suppression of
the vortex street were observed. When a time-independent state is reached, the lift
force is zero and the drag has reduced by about 16% when compared to the drag on
an undeformed cylinder. This value is close to the reduction achieved in the concave
configuration (12%) at the same Reynolds number. Similarly, the increase in base
pressure for the concave configuration is consistent with the lower drag as compared
to the flow past the convex geometry. In the wavy square cylinders, the separation
point was fixed by the geometry, in contrast to the circular cylinders studied in this
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work. Nevertheless, the upstream cross-flow induced by the geometry, steady-wake
features and the subsequent drag reduction suggest that the stabilization mechanism
may be similar.

We finally note that the increase in Reynolds number from 100 to 500 has not
altered the majority of the steady features of the lower-Reynolds-number flow near
the body. The flow structures observed are similar with the exception of the occurrence
of weak shedding at the top of the cylinder.

6.2. Weak shedding and the influence of the symmetry boundary condition

Since our motivation in considering the concave and convex deformed cylinder was
as part of a longer cylinder, which would not be highly deformed, we are motivated
to ask what influence the artificial symmetry boundary condition imposed on the
computational domain plays in the vortex suppression. We therefore considered in
§§ 5.2 and 5.4 a modified geometry to demonstrate the extent to which the steady
features found for the flow past the concave configuration would persist, even with the
top of the body reconnected to a straight cylinder addition. We had anticipated that
flow past this configuration would resume the shedding close to the vertical extension
and also allow us to assess the effect of the axial flow on the classical mechanism of
vortex formation in the wake of a nominally two-dimensional body.

The results demonstrate that rather than the straight part of the cylinder
influencing the curved region and destabilizing the steady wake found for the concave
configuration, the curved part influences the vertical extension and weakens the two-
dimensional shedding expected for a straight circular cylinder at Re = 100. Since the
axial flow along the stagnation face is directed towards the vertical extension, this
result might be anticipated.

However, at Re = 100, even at the top of the straight extension where periodic
sectional fluctuations are observed, the vortex cores do not appear to form fully and
remain, at least in the near wake, where they are partly attached to the developing
shear layers lower down the body. The root-mean-square value of the lift coefficient
from the mean, C ′

Fy , at s/D = 1 is 5 × 10−3 and reduces to 2.4 × 10−3 at s/D = 3
and finally a steady state is reached at the junction of the vertical extension with the
curved part (s/D =6). In comparison to what we would expect for flow past a straight
cylinder of C ′

Lrms = O(0.5), a relatively weak form of shedding develops, consistent
with the wake topology depicted in figure 15.

The attenuation of vortex shedding can also be associated with the increased
length of the formation region and the consequent decrease of the Strouhal number.
At Re = 100, the frequency of the horizontal component of the transverse force
shows a reduction of approximately 36% when compared to the value for the convex
configuration (which was 0.1761 when P = 8). For a straight cylinder at the same
Reynolds number, the St − Re plot based on the experimental data obtained by
Williamson (1989) indicates a Strouhal number of approximately 0.164, which is
lower than that found for the convex case, but considerably higher than the value for
the concave configuration.

When increasing the Reynolds number from Re = 100 to Re = 500, rather than
observing a strong two-dimensional vortex shedding past the vertical extension, we
observe that shedding primarily occurs at the junction between the deformed and
straight cylinders (figure 22a). Although not presented in the results section at
Re = 500, the magnitude of the streamwise vorticity generated in the near-body shear
layers was larger than at Re = 100. Potentially more significantly, the w velocity com-
ponent in the wake also grew to a similar magnitude as the free stream, U∞. Bearman
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(1967) investigated the effects of base bleed on the flow past a two-dimensional model
with a blunt trailing edge and found that the regular vortex street pattern broke
down with sufficiently large bleed quantities. Similarly, we found that the shedding at
the top of the vertical extension is suppressed by the axially aligned flow at the rear
of the cylinder becoming parallel to the free-stream direction (owing to the upper
numerical boundary condition) and acting as a base bleed type mechanism.

We have therefore observed that the concave configuration can partially suppress
the vortex shedding in a straight cylinder attached to the curved one. At the junction
between these two geometries, the straight extension has also influenced the overall
wake dynamics, as indicated by the fact that at the plane z = 0 there is a much
narrower wake than at the same spanwise location for the concave configuration
without vertical addition (see figure 10). If the vertical extension were sufficiently
long, we would expect two-dimensional shedding to be re-established eventually.
Further, a longer straight extension would potentially allow the flux of axially aligned
fluid from the curved cylinder to be re-aligned into the free-stream direction in a
more benign manner where vortex suppression may not take place. Nevertheless,
the current results indicate that the dynamics in this region are likely to be highly
three-dimensional and not amenable to sectional/two-dimensional interpretation.

7. Conclusions
In this paper, two configurations of uniform external flow past a deformed cylinder

whose centreline followed a quarter segment of a ring were investigated at Re = 100
and Re = 500. The two geometries were fixed so that the plane of curvature of the
deformed cylinder was aligned to the free-stream direction with one end parallel to
the flow and the other normal to it. Finally, in one configuration, the flow was directed
onto the outside of the deformed cylinder (convex configuration), whilst in the other
case, the flow approached the inside of the bend (concave configuration). We have
demonstrated how these geometries lead to very different highly three-dimensional
flow patterns which are dependent on the orientation of the stagnation face and
cross-validated the simulations with flow visualizations at comparable conditions.

Our investigations have demonstrated the following features in the two
configurations considered.

(i) In both the concave and convex configurations, there was a significant
component of flow in front of, and aligned to, the stagnation face with a magnitude
of approximately 30% of the free-stream flow. In the concave configuration, a similar
type of flow was also observed immediately behind the cylinder.

(ii) In the convex configuration, vortex shedding was observed to be driven
primarily by shedding arising at the top of the cylinder, which is where the geometry is
normal to the free stream. The shedding had a single frequency all along the cylinder,
which is in contrast to what would be predicted by a sectional argument where
each two-dimensional section is analysed independently by considering the normal
local flow. A sectional argument would predict a variation in shedding frequency.
A rudimentary alternative sectional modelling has been suggested, based on the top
vortex-shedding frequency and on the phase offset related to the time required for
the free stream to reach the stagnation face.

(iii) In the concave configuration, vortex shedding was completely suppressed at
Re =100, although a milder form of shedding at a Strouhal frequency significantly
lower than that for the classical two-dimensional shedding was observed at Re = 500
at the top of the geometry. The suppression of vortex shedding consequently leads to a
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reduction in total drag. The mechanism behind the vortex suppression was attributed
to the stagnation face flow and the associated production of streamwise vorticity
in the developing shear layers of the cylinder. This type of vortex suppression has
previously been observed in flow past wavy cylinders (Darekar & Sherwin 2001): in
both cases, this suppression mechanism is also associated with a large variation of
wake width along the span.

(iv) To examine the effect of the artificial top computational boundary conditions
in the concave geometry, a vertical extension, 6-diameter long, was considered. This
modification did not destabilize the steady wake features of the deformed geometry; on
the contrary, the curved geometry weakened the expected two-dimensional shedding
behind the region normally aligned to the free stream. The mechanism behind the
disruption of the two-dimensional shedding was attributed to a significant (around
30% of the free stream) axially aligned component of flow drawn behind the cylinder
into the straight part of the configuration and acting in a similar manner to a base
bleed mechanism as this flow is re-orientated into the free stream. A natural extension
to this work would be to perform a gradual increase of the length of the vertical
addition to investigate the threshold where the top vertical cylinder begins to shed
in a classical two-dimensional manner at Re = 100. However, there is a significant
increase in computational expense in undertaking this extension and so this was not
possible within this study.
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Peraire, J., Peiró, J. & Morgan, K. 1993 Multigrid solution of the 3-d compressible Euler equations
on unstructured tetrahedral grids. Intl J. Numer. Meth. Engng 36, 1029–1044.

Sherwin, S. J. & Karniadakis, G. E. 1996 Tetrahedral hp finite elements: algorithms and flow
solutions. J. Comput. Phys. 124, 14–45.
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